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PERFORMANCE PORTABLE DESIGN



QMCPACK

§ QMCPACK, is a modern high-performance open-source Quantum Monte Carlo
(QMC) simulation code for electronic structure calculations of molecular, quasi-
2D and solid-state systems.

§ The code is C/C++ and adopts MPI+X(OpenMP/CUDA)
§ Monte Carlo: massive Markov chains (walkers) evolving in parallel. 1st level 

concurrency.
§ Quantum: The computation in each walker can be heavy when solving many 

body systems (electrons). 2nd level concurrency.

In a nutshell
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MAPPING CONCURRENCY TO PARALLELISM

§ Walkers Nw are not data parallel but task parallel
– Workload per electron move depends on accept/reject. GPU
– Workload per step moving all the electrons is roughly equal. CPU

§ Electrons are data parallel
– Kernels are O(Ne2-3) per sample. Large Ne CPU. Small Ne GPU.
– Naturally, Ne vector computation utilizing SIMD and SIMT. CPU/GPU

§ Simulations need Ne from 10 to 10000 depending on the scientific 
questions
– Use Nw and Ne to balance compute node efficiency and time-to-

solution.
– Need a tailored approach for performance portability beyond 

programming models.

Monte Carlo can be a challenge for parallelism
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Unfriendly



MAPPING CONCURRENCY TO PARALLELISM

§ Our CPU/GPU portability experience 
since 2010
– Walker batching saves GPU kernel 

overhead in small problems.
– Lock-step algorithm has performance 

penalty with large problem sizes.
– Incompatible internal APIs and diverged 

code paths without fallback for missing 
features.
• CPU QMC drivers have no walker 

batching
• Legacy CUDA QMC drivers are very 

bad with large problem sizes

Need a flexible scheme at high level for all sizes of Nw and Ne
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§ Requirement for performance 
portable code
– Feature complete
– Computationally intensive pieces 

accelerated and selected at run 
time

– Single source is desired but 
architectural specialization is 
possible and only allowed at the 
bottom level.

– Not restricted to a particular 
programming model at high 
abstraction level



MAPPING CONCURRENCY TO PARALLELISM

§ The walker population with a node is subdivided 
into crowds.
– Legacy CPU drivers have crowd size 1.
– Legacy CUDA drivers have 1 crowd.

§ Walkers within a crowd evolve in lock step at 
every single electron move. Data parallelism.

§ Walkers between crowds are not synchronized 
until all the single electron moves are 
completed within a step. Task parallelism.

§ Lower levels have both batched and non-
batched APIs. Fallback is by default and can be 
specialized.

Design unified QMC driver design for flexible dispatching
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Time evolution

Crowd 0

Crowd 1

Unified batched QMC driver design



PERFORMANCE PORTABLE IMPLEMENTATION



MAPPING CONCURRENCY TO PARALLELISM

§ Crowds are mapped to CPU threads.
– No idle. Nested threads are optional.

§ Crowds leverage GPU streams/queues 
explicitly or implicitly.

§ Desynchronized crowds keep the computing 
device busy.

Threads and streams
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Time evolution

Crowd 0

Crowd 1

Unified batched QMC driver 
execution on an accelerator

MiniQMC concurrent crowds
IBM XL OpenMP runtime



IMPLEMENTATION STRATEGY

§ Spline single particle orbital evaluations are 
implemented using OpenMP target offload

§ Slater determinant updates are implemented 
using cuBLAS/cuSolver.

§ Both batched and non-batched code path are 
specialized for maximal performance.

§ Non-local pseudopotential evaluation supports 
additional batching for quadrature points 
evaluation.

§ Jastrow factors and distance tables remains 
on the CPU for the moment.

The current status
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Majority cost

Complicated algorithm but 
heavy cost.

Complicated algorithm but 
light cost.



PERFORMANCE PORTABILITY WITH OPENMP

§ 2019 PPP meeting, IBM XL C/C++ compiler is the only working compiler for QMCPACK 
§ 2019 Dec 2nd. https://github.com/QMCPACK/miniqmc/wiki/OpenMP-offload

A touch journey in 2019
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Compiler Clang 9 AOMP 0.7-4 XL 16.1.1-3 Cray 9.0 GCC 9.2

device NV AMD NV NV NV

math header conflict F P P P P

math linker error P P P P P

declare target static data P P P P F

static linking F P P P F

check_spo FR FW P P FL

check_spo_batched FR P P P FL

miniqmc_sync_move FR P P P FL

Cray 9.1 inherits Clang 9 math function issues.



PERFORMANCE PORTABILITY WITH OPENMP

§ 2020 Aug 30th. https://github.com/QMCPACK/miniqmc/wiki/OpenMP-offload

A lot of exciting improvements in 2020
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Compiler Clang 11 AOMP 11.8-
0 XL 16.1.1-5 OneAPI

beta08 Cray 9.0 GCC 10.2

device NVIDIA AMD NVIDIA Intel NVIDIA NVIDIA

math header conflict Pass Pass Pass Pass Pass Pass

complex arithmetic Pass Pass Pass Pass Fail -

declare target static data Pass Pass Pass - Pass Fail

static linking Fail Pass Pass Pass Pass -

multiple stream Pass Pass Pass Functioning Functioning -

check_spo Pass Pass Pass Pass Pass -

check_spo_batched Pass Pass Pass Pass Pass -

miniqmc_sync_move Pass Pass Pass Pass Pass -

Workaround in cmake



INTERACT WITH COMPILER DEVELOPERS

§ LLVM and SOLLVE fixed 17/20 bug reports.  4 requested optimization added.
§ AOMP fixed 9/14.
§ Contribute tests to vendor compiler team via early hardware access program.
§ Having our own testing. https://cdash.qmcpack.org

QMCPACK OpenMP offload works cross platforms
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https://cdash.qmcpack.org/


PERFORMANCE ON SUMMIT
NiO benchmark at various sizes
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§ Clang becomes better than XL in 
overall performance.

§ Clang has a more efficient 
runtime but slower kernels.

§ At 512 atom size. New GPU code 
is way more efficient.

§ With optimized code paths, the 
new GPU implementation 
reaches at least 50% 
performance of legacy CUDA 
code which offloads more to GPU 
and use async computation.



IMPROVEMENTS NEEDED IN QMCPACK

§ QMCPACK developers put a large effort on refactoring the existing code and 
adding a better design. The progress is not easily visible to the outside but 
fundamentally important to make all things happen. Will keep doing this non-
stop.

§ Need to further reduce data movement and synchronization. This requires 
making more computation go asynchronously.

§ Use algorithmic innovation to fundamentally solve problems.

Keep effort in making the code better
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IMPROVEMENTS NEEDED OUTSIDE QMCPACK

§ In OpenMP, we need
– target nowait async support with task dependency.
– More GPU related 5.0 features implemented.
– Interoperability with vendor programming models.
– Vendor compilers more reliable and capable.

§ Libraries
– Need batched BLAS1/2, see online manual and cublas_missing_functions

§ Tools
– OpenMP friendly debugger and profiler.

Software stack missing pieces

16




